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Abstract—Temperature or concentration at a fixed point may be predicted for a subsequent moment

(t + 1) by similar values at the adjacent points at a given time moment ¢ and previous moments (¢ —j- 7).

This predicted quantity is found as a mean one for its actual and previous values at all space points.

Space-time countable set averaging is made by an averaging matrix. The normalization condition of

averaging matrix coefficients results in parabolic or hyperbolic transfer equations involving relaxation

terms. In the case of a polynomial averaging matrix the transfer equation does not contain lower powers
of the differential Laplace operator.

NOMENCLATURE
T, temperature or concentration;
t, time;
X, abscissa;
T, free path time, time quantum;
h, free path, distance quantum;

j.k,p,q,m, natural numbers;

Iy, coefficients of averaging matrix;
C';,,,, number of 2m combinations g;
s, Oorl;
Ty relaxation time;
0, energy or substance flow;
c, heat capacity;
V. Hamilton operator;
V2, Laplace operator;
2p+s

ashls, transfer parameters.

IN WORKS [1-9] the diffusion equations for energy
and substance were proposed which contain relaxation
addends. The experiments on reciprocal diffusion in
alloys [10] confirm the presence of large relaxation
addends in the diffusion equation which at the begin-
ning of a process exceed those for the rate of a con-
centration growth.

The equation for heat conduction or diffusion may
be obtained assuming temperature or concentration T
at a moment (t + 1) at a point x to be a mean quantity

oK +

T(x,t+71) = Z

I T(x +kh; t—jt) )

of temperatures or concentration at the adjacent points
X =x+kh; k=0; +1; %2, 2

at given ¢ and previous time moments
ti=t—jr; j=0; 1; 2. 3)

Distance quantum h between two adjacent points is
some free path [13] which is covered for free path time
7, being a time quantum of a transfer process.

Coefficients I; of the averaging matrix I satisfy the
normalization condition

S Y L=t )

j=0k=—-o

785

which shows that if T is unchangeable at all points
during the whole process

T(x+kh; t—jr) = Tp = const, (5)

then the predicted function of T at a point x in time 1
does not change
Tx,t+1)=Tp. (6)

Relation (1) predicts the quantity T at x at moment
(t+1) following ¢ as an arithmetic mean of quantities
Téxx, t;) which are observed at a given moment ¢ and
were observed during previous moments (f —j - 7) at all
points x; of the straight line x.

There is no ground to consider that the effect of
symmetrical points appears to be different, and, there-
fore, for the numbers of the averaging matrix the

condition
Dej=T 4, v

is satisfied, that allows a temperature at the points
equidistant from x to be singled out in relation (1)
Z FOJ

T(x;t+71)= X;t—jt)

+
i

FkJ[T(x+kh, t—]‘L')
! + Tlx—kh;t—jr)]. (8)

1t is natural to consider that the effect of far distant
points is weaker than that of the adjacent ones, and
with an increase in k, the matrix numbers decrease
monotonically

s *
P18

k

[Diyl 2 104l 9)

It is obvious that a contribution of the previous tem-
peratures to temperature formation 7(x,t+1) is the
less, the earlier these temperatures were observed
and thus:

Tl 2 10k, j+1l (10}

that is quite analogous to the previous inequality. It
may be expected that the points infinitely far along
the abscissa and in time do not affect a temperature
change at a point, and the asymptotic equalities

(11)

lim ij = lim ij= 0

k= j—roe
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are therefore valid. In particular, such an equality holds
in the case of a finite averaging matrix. In [ 5] I consists
only of two non-zero elements

I'.14=T.,=05 (12)

Due to a small length h and time 7 of a {ree path
each temperature in equation (8) may be expanded into
a Taylor series with respect to kh and (—jz):

T(x+kh;t—jt)

1 [eT T y
- T+ — c—kh 2
1! 6t

[ e
+Cas f"fal (' =20 + ...+ (= 1)
" na ;n q(tq(kh)" o)+ +(=1) a ,,('t)"_J(13)

and the same expansion may be performed for a pre-
dicted temperature
T(x,t+71)

eT v 0T 12 T ¢4

=T+ 4t — ...

ar 11 4t 2! ot g! (14)

Of course, all partial derivatives are taken at a point x
atamoment t, e . atk =j= 0.

If all these expansions are substituted into relation
(8), then in the R.H.S. all odd coordinate derivatives
cancel out, and it may be written as:

T+iz_‘€a ﬂf aq_TT_q+
ot 1 o 2! ot q!

= i FO[T_a_Tl] aZT:C_z_12+
Fer at 11 a2 210 T

AQTT‘I
“l)qgt‘qqu‘*' J+2 > Z Ly

i=0k=1
aT < T 2T ]
T— : h2 2 2:2
X{ a1’ +2[(7x T " JJ

L[, T PT

—— 13 h2k2 i — 3.3

3![ E A I
o

1 [T
R 2m}.2m
+2m!‘\ h k +sz—*—*—,‘ NETEPPW

X h2mv2k2m—2

& T
Ox2m=2pop2p

*mT )
am szjsz

22+, +C3,

X hIm= 2P 2m=2pe2pi2p L 4

1 C1 02m+1T
Em+ 1)1 " axmor

ath
2m+1 T

6x2m— zatS
62m+ 1 T

W72+ C,

2m—-21,2m—-2_3:3 2p+1
x h k T+ + O3 FxIn T
aZm+1T

2m-2p),.2m—2p 2p+1;2p+1
x h k 4Pl +”'+—ﬁt2"‘“

X12m+l_j2m+1‘|+...}. (15)

In this sum mixed time derivatives of an even order
have a plus sign and those of an odd one, a minus sign.
Matrix coefficients I'; tend to zero rather quickly, and
the averaging matrix I’ may be, on the whole, finite
so that transposition of summation order is possible.
Taking into account the main property of averaging
matrix coefficients [4] or its equivalent

Z To+2 ¥ T hy=1

j=0 k=1

(16)

it directly follows from symmetry condition (7), and
equation (15) does not contain an unknown function
T(x, t).

Determination of a relaxation time spectrum [6-8]

8= pr [1— —1)2 Z Toiff+2 Z Z [ )J )

and a kinematic parameter of internal transfer of even
O<psm—1)
th ZpTZp o kY

= Cl YT Tk

(18
(2m)! j=0k=1 )

and odd orders

(2m+1)
X Z Z rkijm—ij2p+1 (19)
j=0 k=1
allows the heat conduction or diffusion equation to be
given in a canonic form

oo aqT m—-1 o« 1 a2m+sT
Z 1 6tq B pZO mzl s=0 p+ 2m Zpat2p+s (20)

and when the field is multidimensional, the R H.S. is a
series expansion of the differential Laplace operator V2

e 0T
‘L’ =

Z ey
In ail previously published works [1-9] consider-
ation was made of simultaneous averaging when the
effect of the previous states is not taken into account,

and according to formula (1) temperature is predicted
only by its actual values

’32p+s

= V" TRT. (21)

T(x,t+71) (x+kh;t) (22)

Z Lo T
k=—oc
but not by the previous values of the function T(x, t).
Such erasing of inheritance is satisfied by the averaging
matrix with zero values of the coefficients in all lines

Iiy=0; j=>t1 (23)
except the first one
Tio#0 (24)
which is satisfied by the normalization condition
+«
Y Tw=1 (25)
k=-
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or owing to symmetry condition (7)

Too+2 Z lo=1

k=1

(26)

For such averaging the relaxation time spectrum
degenerates, and all quantities t, coincide with free
path time except for a constant multiplier

.= 1/3(q")
It is important that all 7, do not depend on averaging

matrix elements. All higher and odd kinematic par-
ameters for internal transfer are equal to zero:

(27

aspii=0; p>0; 520 (28)
and only pure geometric parameters
agm=£iﬂo-k2"‘; I1<sm<ow (29)
2m)=

differ from zero which are proportional to even powers
of the free path h and depend mainly on the coefficients
o of the first line of the averaging matrix T.

Relaxation times (27) with an increase of their order
and power decrease monotonically

Tg> Tge1;  lim7,=0 (30)
g

and thus heat conduction equation (20) which corre-
sponds to simultaneous averaging or, i.e. to complete
erasing of inheritance
o a0 aZmT
2 gy = L @

2m

(31)

has small relaxation times at higher time temperature
derivatives. These equations have been considered in
[1-9].

Attention should be paid to the fact that there may
exist different modes of simultaneous averaging even
on the finite section 2ph wide

x,=x+kh; —p<k<p. (32)

For example, for the averaging coefficients
Tio = 1/2p+1) |kl < p; 53

Tio=0; |kl>p; Li;=0 j=1,

in terms of which linear smoothing [11-12] or aver-
aging by means of the arithmetic mean is expressed

T(x;t+1)= Z T(x+kh;t)

2p+1, 5,

(34)

at a moment ¢, the kinematic, more precisely geometric
transfer parameters

2h2m c 2m. 1

Cp+1D2m)! = ’
become infinitely small with a decrease of their order
(36)

0

A3 = <m<oo (35

lim a3, =0

m=ow

and may be described by a monotonic decrease. Thus,
we have:

H(@Sm) > ™" (@8m+2). (37
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Therefore, heat conduction equation (31) in the R.H.S.
has also small parameters at higher coordinate tem-
perature derivatives.

However, the situation becomes essentially compli-
cated if simultaneous averaging is made not only by
linear relation (34) but by the parabolic law

1 Sz ..Sz,, So Sz .,Sz,,

k2 Si  ..Sie2 S Sa . Sane2

1—‘kO =

k* Syp+2..San Son San+2..San
(38)
Here the sums of even powers are designated [11-12]

P
2 ke

k=-p

(39)

and all conditions of expression (33) are surely satisfied.
Parabolic-type averaging (38)

P
Z rko T(X + kh, t) (40)

k=-p

T(x,t+17)=

corresponds to smoothing by means of an algebraic
second-degree polynomial constructed by the method
of least squares for the points [see equation (32)],
whose number is greater than a degree of an approxi-
mating polynomial

p>0. 41)

For such a simultaneous averaging matrix the first n
of geometrical transfer parameters (35) are equal to zero

an=0; m=12,....n (42)
and the heat conduction equation
o« T aZrnT
= m 43
; ! 6[11 m Zn-é-l a2 axm ( )

does not contain the first 2n of coordinate temperature
derivatives.
From the energy conservation equation
oT

ot
where ¢ is the material heat capacity, it follows that
between energy flow Q and temperature gradient there
exists the relationship

= - 1 div Q, (44)
c

[=¢] aq—l == «©
r"—g= —cgrad VZ"' 2p-2
qzl e 6t g pz() mzl CIZP
T
x [a%z, T+a3ith LaTJ (45)

being the Fourier law generalization. If the powers of
free path time being higher in the first derivative and
those of free path being higher in the second derivative
are neglected, i.e. assuming

7,=0;
m=2;s=0m=1;s=1)

g>1 (46)

2p+s .
alr‘:l+s = Oa
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then from relation (45) for temperature gradients and
its time derivative, the Fourier law follows

1,0 = —cadVT 47)
since thermal conductivity of a substance is
a=aljt, = Ac. (48)

If © and h being greater than two are neglected, ie.
assuming
T,=0;

q>2, (49)

then basic relation (45) results in the equation for
Peierls—Cattaneo’s heat flux

~ o0
‘[1Q+T%?§—= —ca3VvT. (50)
If all time derivatives are taken into account, i.e.
2 #0, (51)

then equation (45) reduces to a polyrelaxation ex-
pression for a temperature gradient

4] aqfl

Q 9
Z ‘L'g M—'lz—caZVT

q=1

(52)

which was proposed by Temkin in 1967 {8].

Of course, a relaxation time spectrum depends
strongly on a temperature gradient, and at the same
time all relaxation times, besides the first one, tend
to zero

=0, g=2 (53)
when
VT =0. (54)

Existence of non-zero relaxation times when per-
forming the last equality means that heat flux may
take place with no temperature gradient, that contra-
dicts the second law of thermodynamics.

Determination of relaxation times [17] and kin-
ematic internal heat-transfer parameters {18-19] is an

interesting field of the study on the inverse internal
heat conduction problem. whose solution was proposed

(8]
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DISCRETISATION DES EQUATIONS DE LA CONDUCTION THERMIQUE
ET DE LA DIFFUSION

Résumé—La température ou la concentration en un point fixé et 4 un instant futur (¢ +1) peuvent étre
prévues a partir des valeurs correspondantes aux points voisins 4 'instant t donné et aux instants antérieurs

t—j-1).

La quantité calculée est obtenue comme moyenne des valeurs présentes et antérieures en tout point de
I'espace. La moyenne spatio-temporelle sur une base finie est réalisée par une opération matricielle. La
condition de normalisation des coefficients de la matrice de moyenne conduit a des équations de transfert
paraboliques ou hyperboliques présentant des termes de relaxation. Dans le cas d’une matrice polynomiale,
I'équation de transfert ne contient pas les puissances les plus faibles de 'opérateur differentiel de Laplace.

EINZELFORMULIERUNG DER WARMELEITUNGS- UND DIFFUSIONSGLEICHUNGEN

Zusammenfassung— Die zeitabhingige Temperatur oder Konzentration an einer bestimmten Stelle 148t
sich fiir Zeiten (t+1) aus den Werten der umliegenden Punkte zu einer gegebenen Zeit ¢ und einer
fritheren Zeit (¢ —j. 1) berechnen. Diese berechnete GroBe ergibt sich als Mittelwert aus den eigentlichen
und fritheren Werten an allen Punkten des Raumes. Eine Raum-Zeitmittelung wurde mit Hilfe einer
mittelnden Matrix durchgefiihrt. Die Normalisierungsbedingung fiir die Koeffizienten dieser Matrix liefert
parabolische oder hyperbolische Ubergangsgleichungen mit Relaxationsgliedern. Fiir eine polynome
mitteinde Matrix enthilt die Ubergangsgleichung keine niedrigen Potenzen des differentiellen Laplace-
Operators.
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OUCKPETHASL ®OPMYJIUPOBKA YPABHEHU! TEILJIONPOBOJAHOCTU
n 1neevy3nn

Annotanus — TeMIepaTypa WM KOHLIEHTPALAA B GHKCHPOBAHHON TOYKE MOTYT OBITH IpenCKa3aHbl
VIS CleAyIoLero MOMEHTa (f+ 7) MO aHalNOTMMHBIM BENMYHHAM B COCCOHHX TOYKAaX B AAHHBIH
MOMEHT ! M B IPEIeCTBYIOIIHE MOMEHTHI (f — jT).

JTa mpeacka3lyemas BEIIMIMHA HAXOLHTCA KaK CPeOHAS IVl € aKTyaNnbHbIX H NpPeNbIOYIIHX 3Ha-
YEeHH# BO BCEX TOYKAX OpOCTpaHcTBa. OCpelHEHHE MO IMPOCTPAHCTBEHHO-BPEMEHHOMY CYE€THOMY
MHOXECTBY peajIu3yeTcs PH HOMOILIY MAaTPHLIbI OCPeTHEHNA. Y CJIOBHE HOPMHPOBaHHUs Ans k03¢ du-
UMEHTOB MAaTpHUbl OCPeOHEHNS NpUBOMUT K YPaBHEHHMSM nepeHoca napabosnuyeckoro unu ruiep-
00JIMYECKOTO THIIOB, KOTOPEIE COAEPKAT PEAaKCAlMOHHBIE wWieHs!. [IpH monHHOMHAIBHOM NOCTPO-

€HMH MaTpPHIBLI OCPpENHEHHs] YDABHEHHE IIEPEHOCA He BKIIIOYAECT MUIAIIne CTeneHH auddepeHimans-
Horo onepaTopa Jlannaca.
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