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Abstract-Temperature or concentration at a fixed point may be predicted for a subsequent moment 
(t + r) by similar values at the adjacent points at a given time moment t and previous moments (t -j T). 

This predicted quantity is found as a mean one for its actual and previous values at all space points. 
Space-time countable set averaging is made by an averaging matrix. The normalization condition of 
averaging matrix coefficients results in parabolic or hyperbolic transfer equations involving relaxation 
terms. In the case of a polynomial averaging matrix the transfer equation does not contain lower powers 

of the differential Laplace operator. 

NOMENCLATURE 

T, temperature or concentration; 

t, time; 

x, abscissa; 

2, free path time, time quantum; 

h, free path, distance quantum; 

i, k, P, q, m, natural numbers; 

rkjr coefficients of averaging matrix; 

df,, number of 2m combinations q; 

s, Oor 1; 

% relaxation time; 

Q9 energy or substance flow; 

c, heat capacity; 

V, Hamilton operator; 

V2, Laplace operator; 
a:$?,, transfer parameters. 

IN WORKS [l-9] the diffusion equations for energy 
and substance were proposed which contain relaxation 
addends. The experiments on reciprocal diffusion in 
alloys [lo] confirm the presence of large relaxation 
addends in the diffusion equation which at the begin- 
ning of a process exceed those for the rate of a con- 

centration growth. 
The equation for heat conduction or diffusion may 

be obtained assuming temperature or concentration T 
at a moment (t + 7) at a point x to be a mean quantity 

T(X, l+t) = t ‘f rkjT(X+kh; t-i7) (1) 
j=O k=-m 

of temperatures or concentration at the adjacent points 

xk=x+kh; k=O; +I; &-2; 

at given t and previous time moments 

(2) 

tj=t-jz; j=O; 1; 2. (3) 

Distance quantum h between two adjacent points is 
some free path [13] which is covered for free path time 
7, being a time quantum of a transfer process. 

Coefficients rkj of the averaging matrix r satisfy the 
normalization condition 

_ +n 

j~ok~,r~j~l (4) 

which shows that if T is unchangeable at all points 
during the whole process 

T(x + kh; t - j7) = To = const, (5) 

then the predicted function of T at a point x in time z 

does not change 
T(x,t+7) = To. (‘4 

Relation (1) predicts the quantity T at x at moment 
(t+z) following t as an arithmetic mean of quantities 
T&, tj) which are observed at a given moment t and 
were observed during previous moments (t -j '7) at all 

points xk of the straight line x. 
There is no ground to consider that the effect of 

symmetrical points appears to be different, and, there- 
fore, for the numbers of the averaging matrix the 
condition 

rk:j = r-k;, (7) 

is satisfied, that allows a temperature at the points 
equidistant from x to be singled out in relation (1) 

T(x; t+r) = F rojT(x; t-jz) 
j=O 

cc cc 

+ jgo kgl rkj [ 7% + kh; t-jr) 
+ T(x-kh; t-jz)]. (8) 

It is natural to consider that the effect of far distant 
points is weaker than that of the adjacent ones, and 
with an increase in k, the matrix numbers decrease 
monotonically 

irk,,i a Irk+l,h (9) 

It is obvious that a contribution of the previous tem- 

peratures to temperature formation T(x, t + 7) is the 
less, the earlier these temperatures were observed 
and thus: 

irk,ji 2 irk,j+li (10) 

that is quite analogous to the previous inequality. It 
may be expected that the points infinitely far along 
the abscissa and in time do not affect a temperature 
change at a point, and the asymptotic equalities 

lim rkj = lim rkj = 0 

k-cc j-cc 
(11) 
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are therefore valid. In particular, such an equality holds 
in the case of a finite averaging matrix. In [S] I’ consists 
only of two non-zero elements 

r-,:0 = l-I:” = 0.5. (12) 

Due to a small length h and time r of a free path 
each temperature in equation (8) may be expanded into 
a Taylor series with respect to kh and (-jr): 

T(x+kh;t-jr) 

= Tf: 
L 

^ 

gkh-%jT 
I 

+ c.’ - ,+x+ (khr- ‘(jT)’ + . . . + (- l)q 

xp FT .~(kh)‘-q(jr)q+...+(-l)“~(jr)” (13) 
/ / I 

and the same expansion may be performed for a pre- 
dicted temperature 

T(x, t + T) 

= T+=+~;+...+““+... (14) 
at4 q! 

Of course, all partial derivatives are taken at a point x 
at a moment t. i.e. at k = j = 0. 

If all these expansions are substituted into relation 
(8), then in the R.H.S. all odd coordinate derivatives 
cancel out, and it may be written as: 

?T 5 (7’T T2 
T+Fii+Tu+...+=+... 

atq q! 

x h2m-2k2m-2T2j2+...+C~g 
i;Z”T 

aX2m-2Pat2P 

x hz*- zPkz*- 2PT2qj2P +. . + __ 

1 
-___ c:,. 

L 

@m+iT 
m h2”k2”Tj + Cs, 

;r2”,+1T 

’ 
(2m+ l)! ax2m-2at3 

x hzm - 2k2m - 2T3j3 + . + C&$: 
azln+‘T 

aX2m-2qp+l 

p+lT 
x h2me2Pk2m-2PT2P+lj2P+l +, + ~ 

3t2”+1 

x752m+‘f2m+1 f... (15) 
I i 

In this sum mixed time derivatives of an even order 
have a plus sign and those of an odd one, a minus sign. 
Matrix coefficients rkj tend to zero rather quickly, and 

the averaging matrix I may be, on the whole, finite 
so that transposition of summation order is possible. 
Taking into account the main property of averaging 
matrix coefficients [4] or its equivalent 

C r0j+21 1 rkj=i 
j=O j=O k=l 

(16) 

it directly follows from symmetry condition (7), and 
equation (15) does not contain an unknown function 
T(x, t). 

Determination of a relaxation time spectrum [668] 

and a kinematic parameter of internal transfer of even 

(OGpdm-1) 

a;$= C$; “‘~2~~r’” i i rkjk2m-2Pj2P (18) 

j=O k=l 

and odd orders 

a:;:\ = -2CtL+i’i 
h2W2PT2P+l 

(2m-t l)! 

x 1 c rkjk2m-2Pj2P+l 

j=O k=l 

(19) 

allows the heat conduction or diffusion equation to be 
given in a canonic form 

and when the field is multidimensional, the R.H.S. is a 
series expansion of the differential Laplace operator V2 

In all previously published works [l-9] consider- 
ation was made of simultaneous averaging when the 
effect of the previous states is not taken into account. 
and according to formula I 1) temperature is predicted 
only by its actual values 

T(x,t+t)= +f rkoT(x+kh;t) (22) 
k=mcc 

but not by the previous values of the function T(x, t). 
Such erasing of inheritance is satisfied by the averaging 
matrix with zero values of the coefficients in all lines 

rkj=o; j>l (23) 

except the first one 

rk0 # 0 6’4 

which is satisfied by the normalization condition 

+a 
c rkO=i 

k=-m 
(25) 
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Therefore, heat conduction equation (31) in the R.H.S. 
has also small parameters at higher coordinate tem- 

perature derivatives. l-00+2 f r!4 = 1. (26) 
k=l 

For such averaging the relaxation time spectrum 
degenerates, and all quantities To coincide with free 
path time except for a constant multiplier 

Tq = T#(q!). (27) 

It is important that all tq do not depend on averaging 
matrix elements. All higher and odd kinematic par- 
ameters for internal transfer are equal to zero: 

a2m+s- , 
2p+s -0. 

p>o; s>o (28) 

and only pure geometric parameters 

2hzm m 

aSm = (2rn)!kZi 
~ c T!&.k2”; l<m<co (29) 

differ from zero which are proportional to even powers 
of the free path h and depend mainly on the coefficients 
I,, of the first line of the averaging matrix I. 

Relaxation times (27) with an increase of their order 
and power decrease monotonically 

r4 > r,+l; lim TV = 0 (30) 
4-a: 

and thus heat conduction equation (20) which corre- 
sponds to simultaneous averaging or, i.e. to complete 
erasing of inheritance 

has small relaxation times at higher time temperature 
derivatives. These equations have been considered in 
[l-9]. 

Attention should be paid to the fact that there may 
exist different modes of simultaneous averaging even 
on the finite section 2ph wide 

xk = x+kh; -p<k<p. (32) 

For example, for the averaging coefficients 

rko = 1/(2p+ 1) Ikl < p; 

l%=O; Ikl>p; r,j=O j>l, 
(33) 

in terms of which linear smoothing [11-121 or aver- 

aging by means of the arithmetic mean is expressed 

T(X; t+T) = &,i T(x+kh;t) (34) 
P 

at a moment t, the kinematic, more precisely geometric 

transfer parameters 

0 - 2h2” f: k2”‘; 1 GM < CC (35) 
a2m - (2p+1)(2m)!kZ1 

become infinitely small with a decrease of their order 

Ji_mm a& = 0 (36) 

and may be described by a monotonic decrease. Thus, 
we have: 

(37) 

However, the situation becomes essentially compli- 
cated if simultaneous averaging is made not only by 

linear relation (34) but by the parabolic law 

S L z: ::s::+2 E: s4 ..SZn+2 I I s2 ..sz. 

rk0 = 
. 

. 

k2” S S 2n+2.. 4” Szn SZ”+z..S4” 

(38) 

Here the sums of even powers are designated [l l-121 

S2,, = i kz4 (39) 
k=-p 

and all conditions of expression (33) are surely satisfied. 

Parabolic-type averaging (38) 

T(X,t+T)= i rkOT(X+kh,t) 

k=-p 

(40) 

corresponds to smoothing by means of an algebraic 
second-degree polynomial constructed by the method 
of least squares for the points [see equation (32)], 
whose number is greater than a degree of an approxi- 
mating polynomial 

p > 0. (41) 

For such a simultaneous averaging matrix the first n 

of geometrical transfer parameters (35) are equal to zero 

a& = 0; m= 1,2,...,n (42) 

and the heat conduction equation 

does not contain the first 2n of coordinate temperature 

derivatives. 
From the energy conservation equation 

3T 
-= -!divQ, 
& c 

(44) 

where c is the material heat capacity, it follows that 
between energy flow Q and temperature gradient there 
exists the relationship 

x 

being the Fourier law generalization. If the powers of 
free path time being higher in the first derivative and 
those of free. path being higher in the second derivative 

are neglected, i.e. assuming 

T4 = 0; q>l 

2!J+s - 0. 
(46) 

azm+s- 3 (m~2;s=O)(m~1;s= 1) 
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then from relation (45) for temperature gradients and 
its time derivative, the Fourier law follows 

t>Q= -caqVT (47) 

since thermal conductivity of a substance is 

u = ai/z, = i/c. (48) 

If t and h being greater than two are neglected, i.e. 
assuming 

zq = 0; q > 2, (49) 

then basic relation (45) results in the equation for 
Peierls-Cattaneo’s heat flux 

rIn+s: ilt = -caiVT. (50) 

If all time derivatives are taken into account, i.e. 

tq # 0, (51) 

then equation (45) reduces to a polyrelaxation ex- 
pression for a temperature gradient 

a4-1Q 
2 T: LltP-’ =-ca:VT (52) 

q=, 

which was proposed by Temkin in 1967 [8]. 
Of course, a relaxation time spectrum depends 

strongly on a temperature gradient, and at the same 
time all relaxation times. besides the first one, tend 

to zero 

tq = 0; q>2 (53) 

when 

VT=O. (54) 

Existence of non-zero relaxation times when per- 

forming the last equality means that heat flux may 
take place with no temperature gradient, that contra- 
dicts the second law of thermodynamics. 

Determination of relaxation times [17] and kin- 
ematic internal heat-transfer parameters [18-191 is an 

interesting field of the study on the inverse internal 
heat conduction problem. whose solution was proposed 

PI. 
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DISCRETISATION DES EQUATIONS DE LA CONDUCTION THERMIQUE 
ET DE LA DIFFUSION 

R&sum&-La temptrature ou la concentration en un point fixi: et B un instant futur (t +T) peuvent btre 
prkvues g partir des valeurs correspondantes aux points voisins $ l’instant t don& et aux instants antkrieurs 
(t-j.7). 

La quantitt: calculie est obtenue comme moyenne des valeurs presentes et anttrieures en tout point de 
respace. La moyenne spatio-temporelle sur une base finie est rialiske par une opbration matricielle. La 
condition de normalisation des coefficients de la matrice de moyenne conduit B des kquations de transfert 
paraboliques ou hyperboliques presentant des termes de relaxation. Dans le cas d’une matrice polynomiale, 
l’tquation de transfert ne contient pas les puissances les plus faibles de l’optrateur diffkrentiel de Laplace. 

EINZELFORMULIERUNG DER WARMELEITUNGS- UND DIFFUSIONSGLEICHUNGEN 

Zusammenfassung-Die zeitabhlngige Temperatur oder Konzentration an einer bestimmten Stelle l%Ot 
sich fiir Zeiten (t +T) aus den Werten der umliegenden Punkte zu einer gegebenen Zeit t und einer 
friiheren Zeit (t-j. z) berechnen. Diese berechnete GrGDe ergibt sich als Mittelwert aus den eigentlichen 
und friiheren Werten an allen Punkten des Raumes. Eine Raum-Zeitmittelung wurde mit Hilfe einer 
mittelnden Matrix durchgefiihrt. Die Normalisierungsbedingung fiir die Koeffizienten dieser Matrix liefert 
parabolische oder hyperbolische Ubergangsgleichungen mit Relaxationsgliedern. Fiir eine polynome 
mittelnde Matrix enthilt die tibergangsgleichung keine niedrigen Potenzen des differentiellen Laplace- 

Operators. 
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flMCKPETHAX QOPMYJIHPOBKA YPABHEH@i TEl-lJIOl-IPOBO~HOCTW 
%i AR@QY3WM 

AkmoTars - TeMrIepaTypa IUIH KOHLWHTpaWi~ B &iKCHPOBaHHOti TOYKe MOryT 6blTb ll&WlCKa3aHbl 

AJIR CJIe~yEOIWrO MOMeHTa (t+ 7) II0 aHaJIOrWYHbIM BWIHYHHaM B COCWHHX TOYKaX B AiYHHblfi 

MOMeHT t Pi B II~AJIIt?CTByK%UHe MOMeHTbI (t - jT). 

3Ta lT~nCKi33yeMaff BWIHYBHa HBXOAHTCR KBK CpeAHSlR AllJl e& aKTyWIbHblX U IIp’2AblAyIUUX 3Ha- 

YeHki2t BO BCeX TOYKaX ITpOCTpaHCTBa. OCpt?nHeHHe II0 lTpOCTpaHCTBeHHO-BPCMeHHOMY CYCTHOMY 

MHOX@ZCTBJ’ p&lJIW3yeTCH IIpH IIOMOIUU MaTpRUbl OCjEjlHeHH% YCJIOBHe HOPMUpOBaHHSl &WI K03#&i- 

UUeHTOB MaTpHUbI OCpeAHeHkiR llpHBOAHT K ypaBHeHH5iM IIePeHOCa napa6onsrecroro kin&i Nllep- 
6onuyecroro TllIIOB, KOTOPbIC COJWpZ3T ~JIaKCZ-IIlHOHHbIe YJEHbI. npU IIOnElHOMULU,bHOM IIOCTPO- 

eHAIi MaTpHUbI OCPenHeHHSl YpaBHeHHe IIepeHOCa He BKJIIOYaeT MJIaJlIIIlie CTeIIeHII AH+$f2~HWlaJIb- 

Hero 0nepaTopa JIannaca. 


